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von Liebig's Law of the Minimum and Plankton Ecology 
(1899-1991) 

H.J .W.  DE BAAR 

Department of  Marine Biology, University of  Groningen, PO Box 14, 9750AA Haren, 
The Netherlands 

Abstract -The  Law of the Minimum was originally formulated by Justus yon Liebig, as one of 
the 50 interlinked laws concerned with agriculture. The original writings ofJ. von Liebig often were 
misinterpreted by his successors. BRAt, rOT (1899) took this one law out of its context and proposed that 
limitation by nitrogen is a dominant factor in plankton ecology, far beyond its original application 
to agriculture. This was opposed by NAmANSOrn~ (1908) who suggested instead a dynamic balance of 
growth and loss terms. Towards validating, or eventually falsifying Brandt's hypothesis, Atkins, 
Harvey, Cooper and others developed the chemical methods necessary for re-defining ocean nutrient 
cycling and growth limitation. The major exception to these modem perspectives was the Antarctic 
Paradox of higla nutrients and low chlorophyll which inspired Gran, Atkins, Harvey and Cooper to 
pioneer the concept of iron limitation. An exhaustive overview is given of efforts to define Fe in 
seawater and its controlling effect on in situ plankton growth, for the 1920-1984 period. Somewhat 
parallel work in the laboratory on single species of algae in chelation-controlled mediahas provided 
much insight, but is sketched only briefly. Martin and contemporaries developed the chemical 
methods necessary for defming the ocean chemistry of Fe and its role for in situ growth. These 
developments are sketched for the 1982-1991 period. Once again the Law of the Minimum and 
associated bold hypotheses served, albeit briefly, to bring a nutrient element in the forefront of 
research. This, and the recent awareness of CO 2 as rate limiting factor, underline the conclusion that 
advances in sciences often hinge on advances in technology, confirming Kta-~ (1962). In this case the 
new analytical techniques developed by Atkins, Harvey, Cooper, Martin and their associates have 
proven revolutionary for plankton ecology. Some observations in plankton ecology may be reminiscent 
of the agricultural Law of the Minimum, but this would not warrant its direct application, beyond its 
original context and agriculture, to plankton ecology. Rather the net rate of increase ofphytoplankton 
is the dynamic balance of multiple growth and loss terms, together also determining the biomass at 
given time and space. 
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1. INTRODUCTION 

July 27, 1676, was a warm sunny day with a gentle onshore breeze. A curious gentleman had 
visited the seaside at Schevelinge (now Scheveningen) in the Netherlands, where henoticed various 
very tiny animals in the sea-water. He had bought a new glass bottle which he gave to a man who 
was going into the sea to wash himself, asking him to rinse it two or three times and then fill it with 
seawater. He sealed the bottle and returned home to nearby Delft. There he viewed it through his 
microscope and saw a very small animal. This was the first ever observation of a marine plankton 
species (VAN LEEUWENHOECK, 1676) which, from the description, is now tentatively identified as 
Mesodinium rubrum Lohmann (TAYLOR, BLACKBOURN and BLACKBOURN, 1971; TAYLOR, 
1981). During the following days very little was found in the bottle, but on 31 July he clearly saw 
some 100, but now much smaller (i.e. phytoplankton) and also of  different shape and very clear. 
These small specimens were seen again on 2 and 4 August, but by 8 August only a very few and 
minute ones were left, and so he abandoned his observations. This constituted the first, albeit 
unintentional, bottle incubation, where a population, first unnoticed, had apparently multiplied in 
exponential fashion (VAN LEEUWENHOECK, 1676; incomplete translation published in 1677; see 
also DOBELL, 1932). 

Some 200 years later, Victor Hen sen in Kiel became convinced that such microscopic algae were 
the base of the marine foodchain. In contrast some of  his contemporaries, like Haeckel, were still 
adhering to the belief that all (organic) foodstuff was brought into the sea by rivers. Hensen with 
fine precision had shown the abundance of plankton collected in his standardized nets. Also at Kiel 
junior colleague Lohmann demonstrated that the sea contained many, many more very small 
organisms dubbed nanoplankton (erratically Lohmann used the word nannoplankton). This 
inevitably highlighted the inadequacy of the net-sampling protocols of Hensen which previously 
had seemed rigorous. Nevertheless, between them, Hensen and Lohmann, and several others, 
observed that plankton varies widely in abundance and by region and season. So what factors could 



von Liebig's Law of the Minimum and plankton ecology 349 

be responsible for these variations in phytoplankton biomass? Ever since then this has been one of 
the central issues in marine ecology: 

"What governs the growth and biomass of phytoplankton ?" 
Throughout the past century this problem has led repeatedly to intense scientific debate between 

those advocating one limiting factor and others contemplating the complex interaction of many 
environmental controls. The early history (1870-1960) of biological oceanography has been 
described most extensively and admirably by MILLS (1989; for comment on Lohmann, see BANSE, 
1990b). Here only the issue of the control ofphytoplankton will be briefly sketched in chronological 
order, focusing on the intense controversies centred around the chemical elements nitrogen and 
phosphorus. The complete historical development is given for the emergence of iron as a prime 
limiting factor of the oceanic plankton community, leading to the major breakthroughs in the decade 
1982-1992. The Leitmotiv (red thread) is the remarkable parallel between the hypotheses of 
BRANDT (1899) and MARTIN and FITZWATER (1988). Finally I will summarize some common 
trends in the evolution of our knowledge which can now be discerned. 

With hindsight one may easily see the 'truth' where in their time earlier researchers remained 
perplexed. Inevitably the reader and the author will tend to take sides when witnessing this historic 
debate. Yet this account is meant as a tribute to all the actors, to Brandt, Gebbing and Nathansohn, 
to Atkins, Cooper and Harvey, and last but not least to John Martin, a man of remarkable intellect 
and drive who stirred up great excitement and controversy. He has prematurely vacated the center 
stage, leaving his work incomplete but it is still a stimulating legacy which will continue to generate 
considerable admiration and debate amongst his contemporaries and successors. 

1.1 Concepts of phytoplanlcton growth and biomass 

When discussing limitation of algae it is crucial to define whether it is the growth rate or the 
biomass that is of concern. For a given area or volume of sea-water the mass balance of algal biomass 
is the difference between growth rate of phytoplankton and various loss terms: 

o r  

NET INCREASE = PRIMARY PRODUCTION - LOSS TERMS 

INCREASE = (PHOTOSYNTHESIS-RF~PIRATION) , - NET 
,'~gae 

(GRAZING + SEDIMENTATION + LYSIS) 

(1) 

(2) 

The importance of losses resulting from grazing cannot be underestimated (FRosT, 1987; BANSE, 
1992; FROST and FRANZEN, 1992), especially where size selection can exert control on the 
community structure (RaE~MAN, KtnPERS, NOORDELOOS and WI~E, 1993). Similarly loss by 
sedimentation is commonly observed during bloom conditions and lysis, even in the absence of 
grazers, is conceivable, in which viruses may play a role (BRATBAK, EC~E and HELDAL, 1993). For 
the sake of the argument changes resulting from physical transport (advection, mixing) are here 
neglected. In general, however, it is the variations in the rates of production and loss that determine 
the standing stock (RaLE¥, 1946). Nevertheless when in a situation where the algae are growing 
faster than they are being eaten, upon several days an essential nutrient, e.g. nitrogen, will run out 
so that growth ceases; the classical spring bloom scenario. Just about at this time the phytoplankton 
biomass has then reached its maximum yield, a concept often, but incorrectly (as discussed below) 
associated with the name ofJ. von Liebig (e.g. PARSONS, TArAHASHI and HARGRAVE, 1984; C~LEN, 
YANC and MACIm'YRE, 1992). 

This mass balance (Eqs 1 and 2) is a simplified description, which ignores multiple and complex 
interactions between phytoplankton, zooplankton, bacteria as well as the organic and inorganic 
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substrates of the real ecosystem (Fig. 1). The intricate and ever changing structure of the pelagic 
foodweb deserves considerable attention (e.g. FASHAM, 1984; HEWES, HOLM-HANSEN and 
SAKSHAUG, 1985; SHERR and SHERR, 1988; BJO/RNSEN and KUPARINEN, 1991 a,b; LANCELOT, 
BILLEN, VETH, BECQUEVORT and MATHOT, 1991) and is currently the subject of intense 
investigation, in projects ranging from detailed study by an individual scientist to large international 
programmes like the Joint Global Ocean Flux Study (DE BAAR, FRANSZ, GANSSEN, GIESKES, 
MOOK and STEL, 1989; DUCKLOW and HARRIS, 1993). 

"Z/ 
Air 

D i s s o l v e d  I'Au~,~,,,~e ~ | • • I 
- • I p l C O - r  n a n o -  m l c r o - I  
Inorganic  | P h o t o s y n t h e s i S "  I Ph- , toPlankton I 
COz,  NO3,  I . I  ~ I 

PO4, Fe | ' ~ I 
| 'heterotrophic' i i i 

photosynthesis grazing 

Dissolved Organic 
Substances 

Ammonium J ill Bacteria 

Respiration 

External source 
by upweUing 
and mixing 

of deep waters 
rich in 

NO3, PO4 

Micro Zoo 
Plankton 

'f 
MesoZoo 
Plankton 

settling 
particles 

Fig. 1. Simplified scheme of the plankton foodweb in the pelagic ecosystem. In reality there is a 
multiplicity of cycles and interactions, where several organisms are also capable of operating various 
trophic functions at once. Yet when, irreverently, viewing the system as ablack box, then it is obvious 
that the ultimate constraints are the abiotic factors (light, temperature, inorganic nutrients) for 
autotrophic primary production. Latter process, as indicated in the fat printed boxes, is the focus of 
this paper. (NB: The silica-cycle, albeit important in the real ocean, is not considered here; yet much 
of what is written about N and P for algae in general also applies to Si as a limitation for those algae 

producing opaline skeletal parts, i.e. diatoms). 
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For example, from the chemical perspective, the cycling of nitrogen alone involves many 
coexisting chemical species, including nitrate, nitrite, N2, ammonia, urea, various amines and 
dissolved amino acids. Each of these may serve as a source of nutrient for photosynthesizing 
plankton organisms. In the dynamic ecosystem most of these chemical forms are often short-lived 
intermediates in the cycles (Fig.l). For example ammonia is very important in regulating 
phytoplankton growth but its supply to seawater is by production within the food web itself. In 
essence for nitrogen, only nitrate and N 2 are considered the ultimate substrates for truly 
'chemolithotrophic' or 'autotrophic' primary production; all other N-forms are considered 
'recycled' substrates for 'heterotrophic' production. 

While acknowledging the complexity of the ecosystem, it is obvious that the primary production 
term is very important (the highlighted box in Fig. 1). By focusing on just this term, and ignoring 
heterotrophic production, the current paper is merely intended to review the historic efforts to 
assess the ultimate chemical (and physical) limits set to the ecosystem. In other words, the latter 
abiotic factors are seen as the 'external' constraints within which plankton communities are 
allowed, and are known, to develop: different communities of plankton species and (organic) 
chemical intermediates, adapted to cope with different abiotic (inorganic) conditions. By restricting 
ourselves to this, admittedly narrow, perspective, we can single out the handful of factors 
controlling the rate of autotrophic productivity: light regime, ambient temperature and inorganic 
nutrients. 

For individual phytoplankton species, each factor can be studied separately in controlled 
incubations (continuous cultures) in the laboratory. The typical curve of growth as function of a 
single limiting factor is shown in Fig.2. For over a century many of such studies have been carried 
out and they continue to be done. In addition the synergistic/antagonistic effect of two or more 
abiotic factors have been investigated with such parameterization, albeit rarely (ICHIMURA, 1967; 
ARUGA, 1965; as cited by PARSONS, TAKAHASHI and MARGRAVE, 1984). Concepts have been 
developed by BLACKMAN (1905) and DROOP (1983), also investigating simultaneous effects of 
multiple factors (BLACKMAN, 1905). Concepts taken from microbiology (MONOD, 1942; 
MICHAELIS and MENTEN, 1913) have proved useful and were first applied by CAPERON (1967) 
and DUGDALE (1967) for describing nutrient kinetics of phytoplankton. For comparison of 
various concepts see also O'BRIEN (1972); DROOP (1983); PARSONS et al (1984); RIEGMAN and 
MUR (1984); MOREL (1987); KILHAM and HECKY (1988); HECKY and KILHAM (1988). 

1.2 The scientific method 

Testing of hypotheses is the crux of science, non-verifiable hypotheses are non-science. 
CHAMBERLIN (1890) was well aware of this truism and devised the industrious method of assessing 
multiple working hypotheses, by testing each one independently until the right idea is proven. Later 
on POPPER (1972) realised that while it is possible to falsify a hypothesis, it is almost impossible 
to provide firm proof. Hence methodology emerges of falsifying a series of multiple hypotheses 
until just one remains unfalsifiable. Such an approach appears ideally suited to our problem of 
multiple limiting factors, if it were not for the fact that these growth-limiting factors are interrelated, 
hence cannot be tested independently. 

1.3 Physical factors 

The lightregime in the surface ocean shifts its spectrum as function of depth, suspended material 
and self-shading; while its intensity varies in time over several orders of magnitude depending on 
insolation, cloud cover, wind mixed layer depth, seasonal ice cover. Unquestionably variation of 
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Growth- 
rate 

Photosynthesis 
ogr C / g C h l / s  

Nutrient uptake 
mol NO3/s  
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% 
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FIG.2. Schematic representation of the growth curve of a single plankton species as function limiting 
factor on horizontal axis. The factor can be the concentration of a limiting nutrient in the bulk 
medium (Monod and Michaelis-Menten) or intracellular (Droop), or the intensity of light with well- 
defined spectrum (P vs. I curve). The response (vertical axis) can be the specific increase in number 
of cells (day1; Monod, Droop) or an indication thereof (e.g. Chl a), the rate of uptake of a nutrient 
(tool m3sl; Michaelis-Menten), and in the case of light, an overall or specific photosynthetic rate 

(e.g. mol C m3d a or tool C mol Chl aldl). 

light is a dominant factor controlling the growth rate of algae. 
Each algal species has its own optimum temperature for growth. Combining all these optima 

(doubling rate [day -1] versus optimum T [°C]) EPPLEY (1972) found a modest temperature 
dependence of  about 1.88 per 10°C. GOLDMAN and CARPENTER (1974) found a similar dependence 
of  about 2.08 per 10°C. Given the oceanic range from about- 1.5°C to +30°C the optimum growth 
rate would vary within about one order of magnitude, significant but not enough to be considered 
a dominant control. However, these compilations rely on a variety of published studies which are 
neither necessarily compatible with one another nor with respect to modem experimental 
technique. For example, BANSE (1991c) in a recent overview showed some deviations of  the 
temperature relation of EPPLEY (1972), in which the temperature dependence appears to be less 
pronounced than in the EPPLEY (1972) relationship, although the difference may be partly ascribed 
to different treatments of the data. 

Summarizing the physical factors, light is too important to be debatable, temperature on the 
other hand appears relatively trivial. One may now consider the inorganic chemical factors: N, P, 
Fe and C, in that historical chronology. 
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2. NITROGEN: BRANDT VERSUS NATHANSOHN, GEBBING 

Karl Bran& started working in Kiel in 1887 and soon after focused on the solution of our 
problem. He i s credited with being the first to focus on chemical factors, reaching beyond traditional 
biology to encompass ideas from agricultural chemistry where J. von Liebig had made great 
advances. A problem which had been encountered all over Europe was that after many years of 
harvesting productive farmland eventually went infertile. J. VON LIEBIG (1855) had demonstrated 
that year after year essential nutrient elements had been removed along with the crop. Under the 
title 'Principles of Agricultural Chemistry' he promulgated 50 numbered statements, from which 
the thirty-third later was singled out as the famous Law of the Minimum: 

When a given piece o f  land contains a certain amount o f a l l  the mineral constituents in 
equal quantity and in an available form, it becomes barren for any one kind ofplant when, 
by a series o f  crops, one only o f  these constituents - as for  example soluble silica - has been 
so far  removed, that the remaining quantity is no longer sufficient for  a crop. 
BRANDT (1899) reckoned that the Law of the Minimum would also govern growth of oceanic 

algae and, from the list of various essential elements mentioned by von Liebig, he selectednitrogen 
(N) as the common limiting factor. Moreover he suggested that the supply of  N (as either ammonia 
or nitrate) from land via rivers into the sea was crucial (Fig.3). Both hypotheses were based largely 
on deductions, i.e. the presumed analogy to the land. There were only very few nutrient values 
available, BRANDT (1899) mentions in a footnote the very scant analyses done on his behest, albeit 
in lakes. Published values for seawater were known to Brandt, but were not very reliable as the 
values were near the detection limit of the method (NATTERER, see MILLS, 1989). 

N2- 
fixation 

Land 

Rivers 

N2 
Nitrogen 

gas 

NO3- I 
Nitrate 

- NH4+ ] ~  
Ammonia 1 ~  

Air 

Sea 

[ PhytoPlankton 
-I 

l 
Surface Waters 

Deep Ocean 

Fir.3. Simple scheme of the marine N-cycle as proposed by BRANDT (1899). 
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The first hypothesis of  limitation by a single factor was soon to be challenged, notably by 
NATHANSOHN (1908) and GEBBING ( 1910). Under the provocative header 'Gilt fiir die Produktion 
im Meere das Gesetz vom Minimum?' ALEXANDER NATHANSOHN (1908) directly pinpointed the 
working hypothesis of  BRANDT (1899), a remarkably direct approach at the turn of the century. 
NATHANSOHN (1908) simply argued that Liebig' s Law of the Minimum was intended for, and was 
only applicable to, arable agriculture, and had no relevance for other issues such as cattle farming, 
ocean plankton or fisheries. In the ocean, crops are not harvested, but many grazers and 
'composting' bacteria are fertilizing the sea again by recycling of nutrient elements. NATHANSOHN 
(1908, §2 on p60) highlights the differences in approach: 

"When we now turn to the study of externaL especially chemical conditions for the 
plankton and its quantitative distribution, we will clearly recognise the great variety of 
problems that ensue once we consider the continual growing and dying of the plankton, and 
once we keep in mind that its biomass results from the balance of these two processes. It 
makes a great difference whether we study a nutrient solution in respect to its maximal 
potentialofproduction (today we would write: its carrying capacity) as Brandtstrived too, 
or in respect to the rate with which the production in itproceeds, as we will have to do when 
we want to clarify the conditions of plankton development. The first variable is, in 
accordance with the repeatedly mentioned Liebig's Law, always only dependent on the one 
nutrient which happens to be in the minimum, while the latter (the rate of production) can 
be affected by all possible components." 
Simultaneous control of the rates of growth and loss terms is what NATHANSOHN (1908) wanted 

us to investigate. Further on in the paragraph curiously enough the effect of 'heavy metals' is 
contemplated. 

As an example, it is virtually a general rule that toxins at very low concentrations are 
beneficial for plant growth. Such influence is for example exerted by the heavy metals, and 
it is therefore well conceivable that the concentration of such elements is not at aH without 
significance. Most metals exist in minimal traces in seawater, and we cannot assess how 
big the impact of these substances and their uneven distribution is on the dominance of one 
(algal) species over the others in a given watermass. " 
Some 80 years later we know a bit more, but still can hardly assess this issue (BRULAND, DONAT 

and HUTCHINS, 1991). 
GESBING (1910, p.65) very much liked the multifactorial focus on the (dynamic) rates of 

production. In his final summary an independent judgement on the issue is given, in some, but not 
all, respects agreeing pointedly (MILLS, 1989) with Nathansohn: 

"It appears to me to go far too far to negate the applicability to the sea of the Law of 
the Minimum altogether, as A. Nathansohn has done. Nevertheless I believe that the Law 
of the Minimum does by no means have the Effect on Production in the Sea the way Brandt 
envisions. It is a Factor though, which works along with many others, in one Place may be 
more, in another may be less pronounced. One singular Cause does not exist in Nature. In 
the Failure to appreciate this Fact is also the major Mistake of K. Brandt to be sought. 
Recently (i.e. in 1910!) the Law of the Minimum is interpreted much too narrow anyway. 
In this narrow Meaning, as also used by Brandt, it does not control the Productivity of 
Farmland either. Liebig (Chemische Briefe, S. 35-50) himself had taken the Law of 
Production in a much wider sense for Farmland, yet in the course of Time this had been 
deteriorated into the, on its own rather fruitless, Law of the Minimum. The original Law 
of Production was in Essence something as: "The Yield (E=Ertrag) of  a Soil depends on 
the Nutrient (N) which is in Minimum supply and the Resistance (IV= Widerstand) that its' 
Uptake by Plants encounters ": 
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E=N - W (50. BrieJ) 
Here are all determining Factors combined. In this we do not only see the Potential for 

Productivity but also, or rather instead, the Rate of  Production. Further scrutinising of  this 
interesting Issue, a more accurate Definition of  Minimum than hitherto commonly used, 
can be found in my full Paper (i.e. GEBBIN~, 1909)" 
The earlier concepts of yon Liebig (Chemical Letter No.50; first edition in 1844a,b,c, verified 

in later editions; VON LIEBIG, 1861, 1865) may be true, yet later on YON LIEBIG (1840, 1842, 1843, 
1855) defined his Law of the Minimum as cited above. However the Law of the Minimum was 
published, i.e. meant to be understood, within the context of overall 50 laws, so the later publication 
of YON LIEBIG (1840, 1842, 1843, 1855) is consistent with his earlier 'Law of Production' in the 
Chemische Briefe No.50, and also consistent with these pronounced conclusions of GEBBING 
(1910). After all YON LIEBIG (1855, p.34) himself concluded that all his 50 propositions are 
contained in one proposition, andhis final sentence tends to reiterate the above formulation (E=N- 
W). Indeed the Letter No.50 was intended to summarize all the previous letters (YON LIEBIG, 
1844a,b,c, 1861, 1865). It should be noted though that VON LIEBIG ( 1844a,b,c, 1861, 1865) defines 
W as a resistance for uptake of a nutrient element from the soil (e.g. a solid phase resistant to the 
necessary dissolution for uptake) and not the various loss terms (e.g. grazing as in above Eqs 1 and 
2) which GEBBING (1910) tended to include also in the W-term. Otherwise the candid disagreement 
with Bran& is remarkable. Nevertheless, phytoplankton production is envisaged as being 
controlled by several nutrients rather than one, and maintained at a constant level by the equilibrium 
between phytoplankton growth and grazing (see also MILLS, 1989, p. 107). 

Despite these contemporary criticisms, BRANDT' s (1899) paradigm, based on taking one ofvon 
Liebig's laws out of context and misapplying it in another scientific discipline, has somehow 
survived for most of the twentieth century. Presumably the rather theoretical contributions of 
NATHANSOHN (1908) and GEBBING (1910) left less of an impression than the results of industrious 
experiments and measurements at sea from the Kiel Institute. The reason was perhaps as much that 
neither Nathansohn nor Gebbing were Chairholders (Ordinarius in German), of whom there were 
24 in Zoology in pre-World-War-I Germany, one per university, and whose influence is nowadays 
difficult to imagine (BANSE, personal communication). BRANDT (1902, 1920, 1925) produced a 
stream of reports and publications which must all have appeared consistent with his authoritative 
treatises and in which he firmly rebuts his critics and restates his long-held belief in the single limiting 
factor. 

However, his second hypothesis (BRANDT, 1899), namely that supply from land was limiting 
N-availability, did not survive. After three decades of research based on the first sets of more or 
less reliable measurements of nitrate in seawater (Natterer of Vienna, Raben with Brandt at Kiel, 
Harvey at Plymouth, Wattenberg's observations in the Meteor expedition) BRANDT (1929) 
conceded that the deep ocean is in fact the major store of dissolved nitrate, and that its impact on 
plankton growth is dependent on the rate of supply to euphotic surface waters provided by upward 
mixing (Fig.4). 

The controversy concerning the route of supply of nitrogen is vividly re-enacted in MILLS 
(1989), noting the influence of Nathansohn who, already in 1906, had highlighted the importance 
of(upward) vertical transport of water as a means to bring essential nutrients into surface waters. 
One stumbling block for Brandt had been the conflicting evidence for the bacterial nitrification 
necessary in deep waters. Only after Brandt diedin 1931 did COOPER (1935a) report decomposition 
experiments. In addition to studies mentioned specifically by MILLS (1989), the experiments of 
BRAND, RAKESTRAW and associates (1937-1942) demonstrated formation of nitrite and nitrate 
which was tentatively ascribed to Nitrosomonas and Nitrobacter species respectively. As late as 
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1946 ZOBELL (1946) stated that there was still a lack of finn evidence to support the tacit 
assumption that nitrification takes place at large scale in the deep sea. Furthermore, it was not until 
1981 and 1982 that it was shown that photo-inhibition may have led to the spurious results obtained 
in earlier studies of marine nitrification (OLSON, 1981 a,b; WARD, OLSON and PERRY, 1982). This 
remains highly plausible in the light of laboratory studies (ALLEMAN, KERASINDA and PANTEA- 
KISER, 1987; HOOPER and TERRY, 1974; BOCK, 1965), although the apriori photo-inhibition can 
never completely be proven for all marine nitrification (POPPER, 1972). 

Air 

Sea 

Surface Waters 

Deep Ocean 

NO3- 
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FIG.4. Simple scheme of the marine N-cycle as seen from 1929 onwards. 
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3. ATKINS, COOPER AND HARVEY: PHOSPHATE AND HYDROGRAPHY 

Somewhat in parallel, and strongly influencing the developments described above, were the 
studies at the Marine Biological Association (M.B.A.) atPlymouth, and the emphasis being placed 
in Norway on the role of hydrography and vertical mixing. MATrHEWS (1916) had come across 
a sensitive colorimetric technique for phosphate (POUGET and CHOUCHAK, 1909) and reported 
phosphate levels in the English Channel which were fourfold lower than those measured by Raben 
in the Baltic Sea. These findings went unnoticed until in 1921 W.R.G. Atkins, a chemist, was 
appointed at the M.B.A. With his strong chemical background (see MILLS, 1989) Atkins realized 
the importance of Matthews' results, and using further improved methods first confirmed 
Matthews' results, and then some years later demonstrated that Raben's values were indeed too 
high (ATK_rNS, 1923, 1925a). In retrospect, it appears that Raben had inadvertently included 
arsenate in his analysis. Conceivably the high values of phosphate reported by Raben could have 
mislead Brandt into believing that phosphate could not be limiting phytoplankton growth. In 
Plymouth, all effort then went into studying phosphate as the limiting factor. In a suite of field 
studies in the Channel it was shown that, just at the end of the spring bloom, not only had phosphate 
become depleted, but also that once the surface waters had warmed, the resulting vertical 
stratification prevented upward mixing of underlying phosphate-rich waters (ATKINS, 1923, 1924, 
1925a). The concept of nutrient limitation by vertical stratification was consistent with earlier 
observation of the upper mixed layer in lakes, known as the epilimnion (BIRGE and JUDAY, 1911, 
1922). As early as 1900-1901 H.H. Gran had investigated the Norwegian Sea and concluded that 
hydrographic mixing and upwelling were important for productivity (GRAN, 1902a,b). Even earlier 
the relationship between regions ofhigherproductivity and upwelling had alreadybeen recognised 
by PUFF (1890) in his dissertation. This thesis and the work of Gran had greatly influenced 
NATHANSOHN (1906) when advocating the role of vertical mixing, and in his later papers 
(NATHANSOHN, 1909, see further MILLS, 1989). 

Additional analyses of water samples collected in the temperate and tropical Atlantic yielded 
phosphate values which were very low in surface waters, but high in deep waters. Now Atkins 
combined this information with knowledge about vertical mixing to produce a suite of classical 
papers (ATKINS, 1924, 1925a,b, 1926) in which he contrasted the permanent stratification seen in 
tropical waters with the seasonal stratification in subpolar waters (see also MILLS, 1989, pp. 157- 
160). Sheina Marshall and A.P. Orr quickly seized upon the technique, and they undertook weekly 
measurements ofphosphate andphytoplankton in the Clyde throughout 1926, thereby demonstrating 
that phosphate was limiting for diatoms (MARSHALL and OP, R, 1927). Phosphate then appeared 
to be the major limiting nutrient. 

Nitrate analyses were still based on the cumbersome distillation method of Raben. In 1920 a 
large fisheries biology project was started at the M.B.A. and the director E.J. Allen appointed a 
chemist, H.W. Harvey to study this topic. Soon a novel strychnine-sulphate method was developed 
for nitrate, based on a technique devised by DENIGI~S (1911) and used during the same cruises that 
Atkins was measuring phosphate (HARVEY, 1926). Soon nitrate concentrations in surface waters 
were also shown to be much lower than those reported by Raben. Together these measurements 
by Atkins and Harvey provided the foundation for the concept of co-limitation by phosphate and 
nitrate resulting from restricted vertical mixing. Independently WATTENBERG (1929; see also 
RAKESTRAW, 1958) had also developed the phosphate and nitrate methods and used these during 
the famous Meteor expedition from 1925 to 1927. His observations, when compiled into a large 
database for phosphate in tropical waters (HENTSCHEL and WATrENBERG, 1930), confirmed the 
findings of Atkins. In addition, a small number of nitrate values were measured with the method 
of HARVEY (1926). At a special ICES meeting held on June 4th 1928 in Copenhagen on "The 
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Estimation of Phosphates and Nitrogenous Compounds in Sea Water", HARVEY (1929), 
WATrENBERG (1929), BUCH (1929), GIRAL (1929), SCHREIBER (1929) and SUND (1929) all 
reported their results, and KARL BRANDT (1929) conceded. In October 1928, ICES also sponsored 
a workshop on the methods, which was held at J. Hjort's laboratory in Oslo (HJORT, 1929). Quite 
remarkable were the bioassays developed by SEHREIBER (1927, 1929; see also HJORT, 1929). 

The work in Plymouth continued, and in 1930 the group was reinforced with the appointment 
of a third chemist, L.H.N. Cooper. COOPER (1933) developed reliable techniques for measuring 
ammonia and nitrite and at sea demonstrated that not only can algae use these forms, but also often 
actually preferred ammonia to nitrate, thus confirming laboratory observations of HARVEY (1933 ). 
Through the 1930s, Cooper established a time series of nutrient measurements in the English 
Channel, which verified the suggestion of HARVEY (1926) that algae take up nitrate and phosphate 
in constant proportion. Initially Cooper reported the N:P ratio ranged between 20:1 to 16:1, but 
later, after applying some corrections for salt effects, finally suggested a range of 16:1 to 15:1. This 
concept had been developed more extensively by A.C. REDFIELD ( 1934) and has now become one 
of the cornerstones of ocean science (HARVEY, 1940). 

Atkins, Harvey and Cooper are now seen as pioneers of marine ecology. All three of them were 
chemists who, by improving the analytical techniques, were able to sort out the correct theory from 
a number of conflicting, long-term hypotheses. 

4. THE ANTARCTIC PARADOX (RUUD AND GRAN) 

All issues appeared to have been resolved, oceanic productivity being controlled by upward 
vertical mixing of nutrients phosphate and nitrate which are cycling in constant proportion of 1:16. 
Until today this is the major truism in virtually all textbooks, or is it? 

Early on a contradictory situation had been identified in polar and subpolar waters. The 
Norwegians were eager to learn (HJORT, 1929) and immediately applied the new analytical 
methods. Thus in 1930 Johan T. Ruud wrote: 

From September 7th 1929 to April 7th 1930 1 accompanied Professor Hjort as his 
assistant on board the floatingfactory S.S. "Vikingen '" on a voyage to the whaling grounds 
along the edge of the ice in the Weddell Sea. (RUUD, 1930) 
In contrast with elsewhere, the concentrations of phosphate and nitrate in the surface waters 

proved to be very high (Fig.5). Yet throughout the austral summer the phytoplankton was hardly 
blooming. This combination of high nutrients with low phytoplankton biomass was dubbed the 
"Antarctic Paradox", i.e. it was seen as an exception to the rule. Later similar observations were 
made in Pacific subArctic and Arctic waters, and in the Equatorial upwelling zone of the Pacific 
Ocean. In fact ~40% of the Pacific Basin was found to have higher nutrient levels in the surface 
waters, than in the 'normal' ocean where nutrients become depleted in surface waters. GRAN ( 1931) 
reflecting on this expedition wondered about an explanation for these observations: 

Another investigation just finished seems to indicate that the growth of the plankton 
diatoms is determined by other factors than the concentration of phosphates and nitrates 
besides light and temperature. Mr dohan Ruud... 
In the preceding pages Gran had described his experiments at Oslo in the week of 16-22 March 

1930 (Ruud still at work aboard S.S. Vikingen!) in which algal cultures had been enriched with soil 
extracts (i.e. containing iron) as well as iron additions. That summer Gran had been working at the 
biological station at Friday Harbour of the University of Washington. Culture experiments 
conducted in the week of 14-19 July 1930 with various iron additions appeared to give a positive 
result 

... but many more experiments will have to be made before the question can be solved. 
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Overall the findings were not conclusive, in retrospect this is understandable in that the iron 
concentrations (~ 10mg per cbm = ~20nM) as determined by collaborator Klem (BRAARUD and 
KLEM, 1931) were about two orders of magnitude higher than ambient levels now known to occur. 
Nevertheless, GRAN (1931) was the first to postulate and attempt to test the concept of Fe 
limitation, thus marking the start of a long series of efforts spanning six decades. 
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FIG.5. Vertical distribution of phosphate or nitrate in the central basins of the oceans. The ratio is 
virtually PO4:NO 3 = 1:16 (REDFmLD, 1934) in the Atlantic, Indian and Pacific and slightly lower 

around I: 14 in the Antarctic Ocean. 

JPO 33:4-E 



360 H.J.W. DE BAAR 

5. HARVEY, COOPER AND IRON LIMITATION 

Meanwhile in Plymouth, H.W. Harvey appears to have been the more reflective character 
(COOPER, 1972). Apparently for a while he had already sensed that there had to be much more to 
the control of plankton, than just vertical mixing of nitrate and phosphate. Already in 1924, Harvey 
was clearly aware of iron in seawater, when searching for the natural catalyst for oxidation of 
hydrogen peroxide he reported concentrations of 0.003 to 0.006mg Fe per litre seawater (i.e. 60 
to 120nM; HARVEY, 1925). When developing the nitrate method of DENIGI~S (1911 ) for seawater 
he was aware that iron occurred in sufficiently low concentration in seawater not to interfere with 
the analysis (HARVEY, 1926). 

The suggestion of GRAN (1931) that iron might play a role in plankton growth was rapidly picked 
up, and from 1932 onwards the M.B.A. group worked continuously on the iron-issue as part of 
their overall investigations. HARVEY (1933) in the classical paper"On the Rate of Diatom Growth" 
describes, among other experiments on the effects of light, phosphate, silicate, nitrate and ammonia, 
the effect of iron (as ferric ammonium citrate) on the number of algal cells. Remarkably upon 
addition of 1,3 and 5mg m -3 Fe (~20, ~60, ~100nM), the number of cells ofNitzschia closterium 
present after 15 days' incubation had increased dramatically, the rate of growth doubling for each 
~20nM Fe added. Inspired by GRAN ( 1931), incubations with soil extracts were also conducted, 
the growth stimulating effect being ascribed not only to the Fe and Si contents, but also to organic 
moieties. In 1935, Harvey addressed control by grazing, thus completing the suite of various 
control mechanisms (HARVEY, 1933; HARVEY, COOPER, L EBOUR and RUSSELL, 1935) which have 
been debated ever since. 

Meanwhile GRAN (1933) was working in the Gul fofMaine on boardAtlantis, the elegant vessel 
of the Woods Hole Oceanographic Institution. Upon advice of Waksman, the effect of synthetic 
ferri-ligno-protein (as proxy of natural humates) was studied, also with additional MnC12 added. 
The oceanic species Rhizoselenia alata hardly responded to such treatment, whereas the typical 
neritic species Leptocylindricus danicus increased its cell division rate by 30-40% upon the 
addition of either the ferri-ligno-protein or the soil extract. Some 58 years later SUNDA, SWIFT and 
HUNTSMAN (1991) reported a similar contrast between an oceanic and a coastal diatom species. 
However, the iron levels in this latter study were likely to have been much lower than those in Gran' s 
experiments (the moles of Fe added can be calculated, see also WAKSMAN and IYER, 1932; but 
knowing the 1932 state of the art the possibility of further contamination cannot be excluded). 

COOPER (1935b) determined iron in various fractions of seawater as well as in marine plankton. 
The total iron (sum of all fractions) in seawater was found to be highly variable ranging from 
4 to 25mg m "3, i.e. about 80 to 500nM, and was compared with previous studies (see below, on 
1920-1984 period). The iron in plankton, expressed per m 3 of sea water, is 0.24-2.3mg m -3, i.e. 
about 5-50nM. The ratio Fe:P = ~4:1 in plankton appeared only slightly higher than Fe: P = 1:1.41 
previously reported by BRANDT and RABEN (1920). From then available thermodynamic 
solubility studies COOPER (1937) calculated that the equilibrium concentration in seawater is 
4 x 10"Tmg m -3 at pH 8 and 3 x 10"Smg m -3 at pH 8.5, or ~8nM and ~0.6nM respectively. [Modem 
concepts predict an equilibrium concentration of Fe(III) = ~0.1nM and negligible Fe(II) = 
~ 10"l°nM (BYRNE, KUMP and CANTRELL, 1988), but kinetic rates of e.g. photoreduction may well 
yield very different true concentrations in the real ocean.] 

HARVEY (1937a) realized that, at such low equilibrium concentrations, the supply of Fe to 
diatoms, apparently containing 4 times as much Fe as P, could not be maintained. To the best of 
my knowledge, HARVEY (1937a) was the first to do a formal calculation of the rate of diffusion 
into the cell, an approach later on applied for macronutrients (MUNK and RILEY, 1952; PASCIAK 
and GAVlS, 1974), Fe (SCHENCK, MOREL and HUDSON, 1988; HUDSON and MOREL, 1990) and 
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CO 2 (RIEBESSELL, WOLF-GLADROW and SMETACEK, 1993). HARVEY (1937a) estimated that the 
rate of diffusion of Fe is about four orders of magnitude below the apparent rate of uptake by 
diatoms: 

The big discrepancies found suggest that diatoms obtain iron by some other mechanism 
than diffusion of  ions from the surrounding water. 
With hindsight we know the "mechanism" was analytical contamination, currently the true Fe: P 

ratio in algal cells is now deemed to be less than 1:1000. Hence nowadays diffusion limitation of 
supply of Fe to (larger) cells (HUDSON and MOREL, 1990) is a feasible proposition again. Otherwise 
HARVEY (1937a) very cleverly suggested adsorption of ferric hydroxide particles on the diatom, 
hypothesizing that carboxyi groups of the lipid membrane maintain a microenvironment with a 
lower pH, which locally increases the solubility of Fe so that it passes more rapidly through the cell 
membrane in its dissolved ionic state. Alas, the fact that photosynthesis tends to increase the pH, 
would not help here. In an accompanying note, HARVEY (1937b) provided evidence that colloids 
in sea water may also help to maintain higher overall Fe levels (as required by the 'Fe-loaded' 
diatoms) than the ~8nM dissolved Fe at equilibrium. Although Harvey may have been misled by 
inaccurate data, remarkably though the various concepts which concerned him (diffusion limitation, 
equilibrium distribution, adsorption of metals on algae, colloids) are still very much in vogue 
nowadays. Most remarkably the recent observations by electrochemistry that >99% of dissolved 
Fe is strongly organically complexed (GLEDHILL and VAN DEN BERG, RUE and BRULAND, personal 
communications; T1MMERMANS, GLEDHILL, VAN DEN BERG, NOLTING and DE BAAR, 1994) have 
revived the notion that the remaining <1% dissolved free Fe (i.e. at pM concentrations) may be 
below diffusion limitation for at least some algal species, where direct uptake of organic moieties 
(e.g. siderophore complexes) as well as algae-colloid interactions (HARVEY, 1937a) are being 
invoked once again. 

In 1925 the British had launched the first series of the Discovery expeditions to the Southern 
Ocean. The extensive and scholarly monographs of HART (1934, 1942) describing the plankton 
communities were concluded with a small chapter on the control of plankton growth. Hart, being 
aware of the work of Gran, Cooper and Harvey, in just one or two lines (HART, 1934, p. 186; 1942, 
p.344) hypothesized that the more abundant diatoms in neritic (nearshore) waters may be favoured 
by coastal sources, i.e. Fe, Mn as well as organics. During the war the M.B.A. at Plymouth was 
extensively damaged by bombing and research virtually ceased. Nevertheless, HARVEY (1945) 
managed to summarize pre-war findings on iron concentrations (pp.34-361), discussing its supply 
(pp. 136-139) to phytoplankton in the context of an important chapter on the fertility of ocean 
waters. It was not until 1946-1947 that Cooper made another attempt to determine Fe in seawater. 
The results, as in the earlier findings, were very scattered, and only by statistical treatment were 
some vague trends discernible (COOPER, 1948a,b). Cooper and Harvey then shifted their attention 
away from Fe, probably realizing that the problem was beyond the reach of the techniques then 
available. 

6. IRON, SEAWATER AND PHYTOPLANKTON ( 1920-1990} 

6.1 Iron in seawater: 1920-1950 

In parallel to the Plymouth school, various investigators were attempting to determine the iron 
content of seawater, but very few studied iron in plankton. BRANDT and RABEN (1920) reported 
on Fe in seawater and their high ratio Fe: of 1:1.41 was mentioned above. For two seawater samples 
ORTON (1923) gave values of~0.1 and ~0.2mg 1-1 . VERNADSKY (1924) proposed iron concentrations 
of-1.4mg i -I citing Schmidt, presumably the same fellow-citizen of St Petersburg who had 
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published in 1874 and 1877 (according to LEWIS and GOLDBERG, 1954). WATI~NBERG (1927, 
p.308) in preparing a method for expected Fe levels in the ~l.5mg 1-1 range, found only 0.06mg 
1-1, near the lower detection limit of his method, and he suggested that the true concentration was 
likely to be even lower. The findings of BRAARUD and KLEM (1931) have been mentioned above. 
THOMPSON, BREMNER and JAMIESON (1932) measured ~0.03 to ~0.08mg 1 1 in waters of Puget 
Sound, with higher concentrations up to 0.28mg 1 -~ near the bottom. Further improvements of the 
method were reported by THOMPSON and BREMNER (1935a) accompanied by a paper (1935b) 
reporting seasonal variation ofFe offFriday Harbour, as well as vertical profiles in the northeast 
Pacific Ocean. The latter study yielded concentrations of 40-200nM soluble Fe and 300-960nM 
total Fe. SEIWELL (1935) collected water from the Gulf of Maine with Nansen bottles deployed 
from Atlantis and reported concentrations of 0.005 to 0.040mg i "1, i.e. ~100 to ~800nM. 
RAKESTRAW, MAHNCKE and BEACH, (1936) developed an iron-sulphide precipitation and 
reported 1-20mg m 3, i.e. ~20-400nM, for filtered seawater off the east coast and at Woods Hole 
itself. HARVEY (1945, pp.34-37) summarized most of these findings and the underlying methods. 

6.2 Iron in the marine ecosystem: 1952-1984 

GOLDBERG (1952), at the beginning of a career studying virtually every chemical element in 
seawater (e.g. GOLDBERG, KOIDE, SCHMITI" and SMITH, 1963; which covered 13 elements at once) 
investigated the assimilation of iron radiotracers 55Fe and 59Fe by marine diatoms. Adsorption of 
iron onto the walls of the culture vessel s was prevented by 'Desicote' coating, similar to' silanizing' 
nowadays when use of glass cannot be avoided. Ferric citrate added to seawater was observed to 
decompose under light and produce soluble ferrous Fe(II) ions. This light effect is similar to that 
reported by PELTZ and LYNN (1938) and more recently has been observed to occur in natural 
seawater (WAITE and MOREL, 1984a,b; HONG and KESTER, 1986; KUMA, NAKABAYASHI, SUZUKI, 
KUDO and MATSUNAGA, 1992). The experiments yielded Fe uptake by Asterionellajaponica in 
the ratio Fe:P = 3.6:1 in keeping with results of COOPER (1935b), i.e. too high from modem 
perspective. It was concluded that Fe is taken up from particulate and/or colloidal form, again 
consistent with HARVEY (1937a,b). The promised follow-up study of distribution of particles in 
the Pacific Ocean utilized novel membrane filters (LEWIS and GOLDBERG, 1954). They reported 
soluble Fe at-3.4gg 1-1 (i.e. ~60nM) and particulate Fe at ~4.5gg 1-1 (i.e. -80nM) in the deep north 
Pacific Ocean (cf. modem values of about 0.2-1.8nM for both fractions, MARTIN, GORDON, 
FITZWATER and BROENKOW, 1989). LEWIS and GOLDBERG (1954) also provided a bibliography 
of all previous iron determinations in marine waters, among which are some 19th century efforts 
(USIGLIO, 1849; MARCHAND, 1855; THORPE and MORTON, 1871; SCHMIDT, 1874, 1877), eighteen 
papers over the 1935-1951 periodby anonymous authors from Japan, and some more, then recent, 
studies (TANITA, KATO and OKUDA, 1951 a,b; KAWAMATO, 1952). 

Simons, Monogham and TAGGART (1953) used the colorimetric indicator o-phenantroline for 
direct determination of Fe in seawater and reported values of2-7gg 1-1 for surface waters collected 
from the tanker Esso Cumberland with a canvas bucket loaded with cement. ARMSTRONG ( 1957) 
reported total Fe concentrations ranging from 4-424gg 1 -l (80-8000nM) consistent with some 
earlier values for particulate Fe in the 42-210~tg 1 1 range (ARMSTRONG and AqYdNS, 1950). 
LAEVASTU and THOMPSON (1958) realized that the membrane filters as used by LEWIS and 
GOLDBERG (1954) were superior to the Whatman filters used previously by THOMPSON and 
BREMNER (1935b), and attempted a revision of the measurements of Fe in waters off the coast 
of Washington State. MOKIYEVSKAYA (1959) provided a fresh overview of studies on Fe in 
seawater. 

In his later textbook HARVEY (1966, pp. 142-146) does not mention these postwar findings. His 
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treatise on factors influencing the growth of plants mentions only briefly the supply of Fe and Mn 
(HARVEY, 1966, PP. 98-99), apparently ignoring his own earlier experiments. In contrast, in the 
oceanographic community along the east coast of the USA there was a revival of the interest in 
Fe limitation. RYTHER and GUILLARD (1959) incubated Sargasso Sea water with a series of 
enrichment media from which in each instance just one essential component had been omitted. 
The medium without (Fe+trace metals) showed the lowest laC uptake, similar to that of the 
untreated control and the medium without silicate. 

Rather than nitrogen and phosphorus, the nutrients limiting photosynthesis in these 
waters appear to be silicate or one or more of  the components o f  the iron - trace metal 
mixture. This does not imply, o f  course, that if these substances were present in excess, 
nitrogen or phosphorus would eventually, perhaps very quickly, become the limiting 
factors. It does imply, however, that they would become limiting at a higher rate of  
photosynthesis, which is another way of  saying that the rate of  primary production in the 
Sargasso Sea, at the time o four  observations, was limited by nutrients other than nitrogen 
or phosphorus (RYTHER and GUILLARD, 1959). 
Note that actual rates were deemed crucial, with the possibility of multiple control by a sequence 

of elements. The obvious next step was to distinguish the critical element in the trace metal mixture. 
MENZEL and RYTHER (1961) reported this to be iron, which alone enhanced 14C uptake in the first 
24 hours, but required the addition of nitrogen and phosphorus to maintain the effect over a three- 
day period. Meanwhile RYTHER and KRAMER (1961) investigated 5 coastal and 4 oceanic species 
of plankton algae and found that: 

The oceanic species attained their maximum populations at levels of  iron capable of  
supporting either no growth or a small fraction of  the potential growth of  the coastal 
species. 
Apparently, they were confirming the same working hypothesis of GRAN (1933) and later on 

BRAND, SUNDA and GUILLARD (1983), SUNDA et al ( 1991 ) as well as BRAND ( 1991 ). In the same 
time MENZEL and SPAETH(1962a) reported soluble and particulateFeconcentrations at ~ 1 gg L l 
in the Sargasso Sea, in another paper contemplated vitamin B-12 (i.e. Co, see also DROOP, 1955) 
as another limiting factor (MENZEL and SPAETH, 1962b), an issue later taken up later again by 
CARLUCCI and CUHEL (1977) as a possible answer to the Antarctic Paradox. Next MENZEL, 
HULBURT and RYTHER ( 1963 ) suggested the effect o fFe to be catalytic, in view of the equally strong 
growth enhancement by A1 (aluminium), an element which has no biochemical function, i.e. is not 
essential. In retrospect, they realized that all experiments of this erahad inadvertently suffered from 
contamination (HULBURT, 1991, personal communication). With hindsight this may also be 
concluded for the independent, but very similar, experiments of TRANTER and NEWELL (1963) in 
the Indian Ocean. This notion of inadvertent contamination was apparently unknown to THOMAS 
(1969), when he conducted an extensive study of the effect of various enrichments on phytoplankton 
populations off Baja California and in the eastern Equatorial Pacific Ocean, in which iron 
enrichment never had the consistent effect shown by nitrogen enrichment. Meanwhile TOPPING 
(1969) had investigated a suite of metals in the northwest Indian Ocean and reported Fe 
concentrations typically at several gg 1-1. RILEY and TAYLOR (1968) had developed a pre- 
concentration technique with chelating resin followed by atomic absorption spectroscopy and 
soon reported values for Fe and other transition metals in the Atlantic Ocean (RILEY and TAYLOR, 
1971). As part of the GEOSECS programme an effort was undertaken to analyze Fe and several 
other trace elements in seawater (SPENCER, ROBERTSON, TUREKIAN and FOLSOM, 1970; BREWER, 
SPENCER and ROBERTSON, 1972). Yet for GEOSECS, only the trace element Ba (barium) has 
eventually proven 'oceanographically consistent'; thus Ba may be considered to be the first trace 
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element for which reliable data were obtained. In his review BREWER (1975, his table 7.13) lists 
five, then recent, studies which with hindsight have subsequently become obsolete. SUGIMURA, 
SUZUKI and MIYAKE (1978) reported that dissolved Fe (-2-4gg lX) was 80 to 90% in organic form, 
an observation mostly of historical interest; as was the remarkable statistical co-variance of the 
later findings by the same investigators of Dissolved Organic Carbon (DOC) with Apparent 
Oxygen Utilization (SuGm~rRA and SUZUKI, 1988; DE BAAR, BRUSSAARD, HEGEMAN, SCHIJF 
and STOLE, 1993; SUZUKI, 1993). 

After THOMAS (1969) no further Fe enrichments were conducted for oceanic plankton 
communities until SUBBA RAO and YEATS (1984) in essence repeated the experiments of MENZEE 
and RYTHER (1961), but this time using modem ultraclean sampling equipment and aware of 
protocols of FITZWATER, KNAUER and MARTIN (1982) for clean incubations. Chelated iron was 
added in amounts from 0.5 to 100gg 1 1, i.e. -10 to ~2000riM, with background concentrations in 
the mixed layer reportedly ranging from 0.37-0.91gg 1 "1, i.e. 6-16nM as compared to about 0.5- 
2nM in the northwest Atlantic Ocean (SYMES and KESTER, 1985) and <0.3nM recently reported 
in the northeast Atlantic Ocean (MARTIN, FITZWATER, GORDON, HUNTER and TANNER, 1993). 
After 4 hours incubation no effect was seen, but after 72 hours photosynthesis was enhanced by 
40% and 75 %, independently of the amount of Fe added. Finally JACQUES, FIAEA and OPdOE (1984) 
investigated the trace element limitation hypothesis as the answer to the 'Antarctic Paradox'. No 
effect of metal addition was observed, yet in retrospect this lack of response is again ascribed to 
inadvertent contamination (JACQUES, personal communication). 

6.3 Growth response of  individual phytoplankton species 

This review is focusing on the concentration of Fe in seawater, and its effect on the in situ 
plankton community. Although the description of past developments is now complete, for proper 
understanding of its effect at the ecosystem level, it is also desirable to conduct complementary 
studies of the growth response and physiology of individual species ofphytoplankton. Although 
this line of research is beyond the limited scope of the current review, some of these studies have 
already been mentioned (e.g. GOLDBERG, 1952) andbeiow some more, butbyno means all, relevant 
findings are summarized. 

Briefly, the introduction of the use o fchelating agents in incubations ofphytoplankton allowed 
the experimental reduction of concentration of free metal ion s down to the levels necessary for plant 
growth (PROVASOLI, MELAUGHLIN and DROOP, 1957). Without clean techniques, the total 
concentrations of metals like Cu or Fe were high in the media. Without chelation control, thi s could 
have either toxic or stimulating effect on algal growth, and hence would, for example, bias a study 
of the growth response to ambient macronutrient (N, P, Si) or light regime. 

Manipulations with chelators like EDTA have also allowed studying the growth effect of metals 
themselves, including iron. Many of the initial studies focused on the role of chelators in maintaining 
Fe in solution for plant growth (DROOP, 1961; PROVASOLI, 1963; JOHNSTON, 1964; DUURSMA and 
SEVENHUYSEN, 1966). JOHNSTON (1964) reckoned that algae required an Fe:P ratio of 1:10, below 
the ratio of 1 :~0.25 of HARVEY (1937a) and GOLDBERQ (1952) but well above the true ratios of 
1:>1000 (DE BAAR, BUMA, NOLTING, CADI~E, JACQUES and TRI~GUER, 1990). Experimental 
investigations of individual algal species were done by DAVIES (1970), SAKSHAUG and HOLM- 
HANSEN (1977) and others. 

The classical demonstration by SUNDA and GUILLARD (1976) that the activity of free ionic Cu 
(copper), rather than its total concentration, is the variable best representing biological availability 
ofametal, has led to the consensus that this is also the ease for iron and othermetals. Most dissolved 
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Fe(III) exists as the dominant ferric hydroxide species (Fe(OH)3 ° and Fe(OH)2 +) which in 
seawater at virtually constant pH ~8.2 occur in constant proportion to the much smaller activity 
of the truly free Fe 3+ ion. Hence, for most biological experiments, albeit usually expressed in terms 
of free Fe 3+ activity, one cannot in fact discriminate between the ferric hydroxide species and the 
free Fe 3+ ion as the bioactive agents. The rate of diffusion to the cell wall would be very similar 
for all inorganic species. In terms of kinetics the hydroxide complexes would still have to 
dissociate for Fe 3÷ to bind to the transport moiety of the cell wall. More recently HUDSON and 
MOREL (1990, 1993) have argued that inorganic hydrolysis complexes of Fe may well be easily 
(rapid kinetics) dissociated and available, i.e. the total concentration of all inorganic Fe, rather 
than only the free ionic concentration (or activity), is equivalent to bioavailability. The dissolved 
organic complexes would have very slow kinetics and, therefore, would not be bioavailable, 
which is in keeping with the demonstrated control by concentration of chelator (e.g. EDTA). Thus 
far, firm conclusions are precluded because the experimental quantification of both equilibrium 
and kinetic parameters for the overall Fe-system in seawater is incomplete. Moreover the 
assumption of nearly constant pH of seawater is invalidated by the effects of photosynthesis, most 
notably in micro-environments of algal aggregates and colonies (RICHARDSON, AGUILAR and 
NEALSON, 1988; DAVIDSON and MARCHANT, 1987; LUBBERS, GIESKES, CASTILHO, SALOMONS 
and BRIL, 1990). 

Diffusion limitation as a general principle was suggested by MOREL and HUDSON (1985), 
illustrated for Fe with a calculated di ffusi ve flux matching the growth requirement of Thalassiosira 
weissflogii. For the green algae Chlamydomonas variabilis, in fairly acidic (pH 5) freshwater, 
SCHENCK, TEISSIER and CAMPBELL (1988) have calculated that diffusion to the cell wall is more 
than adequate when applied to all inorganic Fe(III) species, but not when applied solely to the free 
ionic Fe 3+ ion. Similarity with the exercise carried out 50 years before (HARVEY, 1937a) was 
apparently overlooked. HUDSON and MOREL (1990) from experimental findings were able to argue 
the case for the likelihood of there being diffusion limitation of marine algae. Having revisited 
Redfield, (MOREL and HUDSON, 1985) had unwittingly revisited the concept of HARVEY ( 1937a). 
If diffusion limitation is indeed quite common, then an adaptive strategy for a cell would be to 
increase its specific surface area, either by staying very small orby modifying its morphology away 
from being spherical (PASCIAK and GAVIS, 1974; e.g. pennate diatoms as suggested by 
CHISHOLM, 1992). Alternatively, the Fe requirement per unit C (carbon) may be minimized 
(SUNDA, SWIFT and HUNTSMAN, 1991), especially if reliance is placed on ammonia as the nitrogen 
source (PRICE, ANDERSEN and MOREL, 1991) since nitrate reduction may account for about 60% 
of the cellular Fe requirement (RAVEN, 1990). 

The earlier hypotheses that algae have to assimilate, directly or indirectly, particulate iron 
(HARVEY, 1937a; GOLDBERG, 1952) had been dictated by the erratic data of those days, and have 
now been abandoned. Nevertheless, colloids and fine particles may still play arole (WELLS, 1990), 
serving as a source (through, e.g., photoreduction) of readily supplied dissolved iron, also as Fe(II), 
towards maintaining the truly dissolved free ionic activity (also of Fe(II)) required for steady 
growth (WELLS, ZORKIN and LEWIS, 1983; WAITE and MOREL, 1984; FINDEN, TIPPING, JAWORSKI 
and REYNOLDS, 1984; WELLS and MAYER, 1991a, b; WELLS, MAYER and GUILLARD, 1991). 
Dissolution of the aeolian input of continental dust may also be supplementing the pool of dissolved 
iron in some regions (MOORE, MILLEY and CHATr, 1984; DUEL, 1986; DUCE and TINDALE, 1991). 

Recent studies based on chelation manipulation, like those done by ANDERSEN and MOREL 
(1982), BRAND, SUNDA and GtnLLARD (1983), HARRISON and MOREL (1983, 1986), RUETER and 
ADES (1987), have provided considerable insight into the physiological role of iron (see also the 
intriguing synthesis by MOREL and HUDSON, 1985). Nowadays it is possible to work at total Fe 
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concentrations of~lnM in the media, so very low ionic activities of inorganic Fe can be attained 
using relatively small additions of chelator (PRICE, personal communication; BRAND, 1991; 
TIMMERMANS, STOLTE and DE BAAR, 1994). Natural seawater contains dissolved organic 
moieties, some of which likely serve as ligands for Fe, and help maintain Fe in solution. In 
particularthe siderophores are very strong ligands, being excreted"intentionally" bymicroorganisms 
(MURPHY, LEAN and NALEWAJKO, 1976; TRICK, ANDERSEN, PRICE, GILLAM and HARRISON, 
1983; KERRY, LAUDENBAEH and TRICK, 1988; REID and BUTLER, 1991 ). These siderophores may 
conceivably have a significant effect on the in situ marine ecosystem. 

7 IRON LIMITATION AND THE LAW OF THE MINIMUM (1982-1991) 

Within the algal cell, Fe has various physiological functions, for example the Fe-S and heme 
proteins (cytochromes) present in the photosynthetic and respiratory chains are electron transport 
proteins. They are the most abundant metal redox proteins and account for most of the Fe in the 
cell (HEWlTr, 1983; RAVEN, 1988). Note that at low light conditions the cell requires much more 
Fe for maintaining growth (RAVEN, 1990) i.e. the growth limiting factors Fe and light are inter- 
related. In addition, the synthesis of chlorophyll a requires catalytic Fe attwo steps of the synthetic 
pathway. 

Other Fe-containing proteins are nitrate reductase, nitrite reductase and sulphite reductases, 
catalase, peroxidase, superoxide dismutase, and nitrogenase (SUNDA, 1990; MOREL, HUDSON and 
PRICE, 1991). The initial steps in the conversion of nitrate towards amino acids also require iron, 
hence the role of Fe as limiting factor is also interrelated with nitrate as a growth-limiting factor. 
Algae utilizing ammonia as N-source not only have an energetic advantage but also require less Fe 
than those utilizing nitrate. For the conversion of elemental nitrogen (N2) large amounts of Fe are 
needed for the enzyme nitrogenase, and Mo is also required (RAVEN, 1988). Hence N2-fixation as 
a route to alleviate N deficiency, to the extent that P would become the ultimate limiting 
macronutrient in seawater is strongly dependent on Fe availability (e.g. BRAND, 1991, pp. 1766- 
1769). 

It was not until 1981, that the first reliable vertical profiles of dissolved Fe were available (e.g. 
LANDING and BRULAND, 1981) and were eventually published (GORDON, MARTIN and KNAUER, 
1982; LANDING, 1983; LANDING and BRULAND, 1987). The rigorously ultraclean methodology 
developed at the same laboratories (BRULAND, FRANKS, KNAUER and MARTIN, 1979) was 
successful for Fe as well. The review of BRULAND (1983) was in time to mention the first of these 
reliable findings, including concentrations of about 1.5nM for the central Arctic Ocean (MOORE, 
1983). In the intense oxygen-minima of the East Equatorial Pacific and the NorthWest Indian 
Oceans very similar dissolved Fe maxima were observed (LANDING and BRULAND, 1987; SAAGER, 
DE BAAR and BURKILL, 1989). In surface waters, dissolved Fe was found to be very low at ~0.05 
to 5nM in surface waters of the Atlantic, Indian and Pacific Oceans (see also SYMES and KESTER, 
1985; HONG and KESTER, 1986). FITZWATER, KNAUER and MARTIN (1982) demonstrated that 14C 
uptake determination of the rate of primary production has to be done with similar ultraclean 
techniques if artefacts caused by contamination with either toxic or stimulating metals, are to be 
avoided. 

7. I Subarctic North Pacific 

On August 1 1987, the R/V Wecoma had arrived at station T-6 (45.00°N, 142.87°W) as part 
of the VERTEX VII program in the subarctic northeast Pacific Ocean. In this region surface waters 
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always contain appreciable concentrations of macronutrients (N, P, Si), so some other factors 
appear to be limiting phytoplankton growth. Here the team from Moss Landing (Fitzwater, 
Gordon, Tanner and Elrod) started a series of experiments using the natural plankton community 
cultured in ambient seawater enriched with 1, 5, lOnM Fe, as compared with untreated controls 
and an enrichment of 10nM Fe + 1 nM Mn + 0. lnM Co. For the first four days of deck incubations 
in the 2 litre bottles there was no enhancement of phytoplankton growth as a result of iron 
enrichment, but after 5.5 days the iron enriched cultures began to outgrow the controls, showing 
increases of chlorophyll a (Chl a) and more rapid uptake of nitrate, phosphate and silicate (MARTIN 
et al, 1989). 

At the next station T-7 (Ocean Station Papa, 50°N 145°W) the experiment was repeated on 6th 
August 1987. Here Kenneth Coale started an independent experiment, where in various, larger 20 
litre, bottles 0.89nM Fe, 1.8nM Mn, 3.9nM Cu and 0.75nM Zn were added. From day 2 onwards 
the Fe enrichments of the Moss Landing team showed significant enhancement over the controls; 
the controls actually showed an initial decrease in chlorophyll a at days 2 and 3. By the end (day 
6) the Chl a in all Fe enrichments was much higher, and nutrients lower, the trend increased in 
proportion to the amount of Fe added (MARTIN and FITZWATER, 1988; MARTIN et al, 1989). The 
experiments of Coale showed a steady growth in both the control and the enriched bottles, at day 
2 both the Fe and the Mn enrichments contained significantly higher Chl a, and by the end (day 6) 
the Fe treated bottle contained much higher phytoplankton biomass, whereas the biomass in the 
other enrichments was only modestly enhanced compared to the control (COALE, 1988, 1991). 

Finally, on 10th August, at station T-8 (55.5°N, 147.5°W) the Moss Landing experiment was 
repeated for the third time. As before at T-7, by days 2 and 3 the enrichments had already outgrown 
the control, again the latter actually having decreased at day 3. By days 4 and 4.5 the control had 
recovered and was in excess of the initial field values of Chl a, but the enrichments had really taken 
off, again more or less in proportion with the amount of Fe added. 

In early September 1987 the planning meeting for the JGOFS North Atlantic Pilot Study was 
being held in Paris. On the final day there was some time for presentations of individual research. 
John Martin presented his now famous plots on the overhead, and soon the audience became much 
excited. Veni, vidi, vici. On 28 January 1988 the paper describing the T-7 experiment of the Moss 
Landing team appeared in print (MARTIN and FITZWATER, 1988). Also shown were the results for 
chlorophyll a of the other two experiments arT-6 and T-8. Hypotheses with grandeur reminiscent 
of KARL BRANDY (1899) were postulated convincingly: 

These data, provide consistent evidence that Fe limits phytoplankton growth in the 
northeast Pacific subarctic. With appropriate independent confirmation this area couM 
become a classical marine example of  Liebig's law of  the minimum. 
This was, in itself, already impressive enough, but an even broader perspective was given. Iron 

availability in oceanic waters was suggested as being important in determining global atmospheric 
CO 2 levels; notably in the Antarctic Ocean where persistent high concentrations ofmacronutrients 
in surface waters (the Antarctic Paradox) was suggested to result from Fe-limitation in its offshore 
regions away from coastal iron sources. Conversely, during the last glacial there was more dust 
input into the Antarctic region, so that productivity may have been higher, and indeed atmospheric 
CO 2 was lower (RAYNAUD, JOUZEL, BARNOLA, CHAPELLAZ, DELMAS and LOVIUS, 1993). 

The paper stimulated great excitement and was actively debated. Firstly, the authors tended to 
emphasize the effect of iron on biomass yield. The implicit assumption that the experiments 
provided evidence of limitation of growth rates was criticized by BANSE (1990c), who calculated 
the growth rates from the complete data tables published by MARTIN et al, (1989). However, his 
interpretation was firmly rejected by MARTIN, BROENKOW, FI'IZWATER and GORDON (1990) and 
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so BANSE (1991a) produced a more extensive re-analysis of the data, which once again was 
rejected (MARTIN, FITZWATER and GORDON, 1991). The closing comment by B~'qSE (1991b) 
showed that unfortunately no consensus had been reached, possibly as a result of the humorous 
floating of an untestable hypothesis (MARTIN et al, 1991) on iron and mermaids (B~qSE 1990a) 
obfuscating the reasoning. Conceptually the debate resembled that between BRANDT (1899) and 
NATHANSOHN (1908), which initially suffered from a total absence of data. The Martin versus 
Banse controversy had data available which in itsel fwas not in contention, but they never reached 
agreement on how properly to handle and interpret the actual data. 

Since then further enrichment experiments of similar design have been carried out by various 
investigators, and in different regions (see below). In all these studies, as in the experiment of COALE 
(1988, 1991), the control bottles always showed steady growth with healthy cell doubling rates, 
irrespective of how strong the growth responses in the Fe enrichments were. In retrospect the initial 
decrease of chlorophyll a in the T-7 and T-8 controls appears to hay e been most unusual (DE BAAR 
et al, 1990). CULLEN, YANG and MACINTYRE (1992) later suggested that the screening of deck 
incubators may have been inadequate so that the plankton community had suffered a light shock. 
Algae may take quite some time to recover from a sudden overexposure to light (BUMA, 
NOORDELOOS and LARSEN, 1993, and references therein). If so, then the Fe enrichments at T-7 and 
T-8 will have served mostly as a 'medicine' (Geritol, MARTIN, 1990) repairing the damage of the 
cellular photosystem resulting from the experimental artefact. Fe is crucial in synthetic reactions 
as well as in the operation of the photosynthetic apparatus of the cell, hence may also remedy such 
photo-damage. In retrospect the poor performance of the control experiments T-7 and T-8 might 
have misled the original authors to believe the real ecosystem is controlled by iron as the single 
factor, i.e. lead them to believe that they had confirmed Liebig's Law of the Minimum. 

It was in 1988 that the accompanying superior quality seawater data for Fe and othermetals were 
published (MARTIN and GORDON, 1988; MARTIN et al, 1989): the outstanding accomplishments 
lead to the grand extrapolations on the role of iron in the Southern Ocean in CO2-cycling and 
climate. Judging from the similarity of vertical profiles of Fe and nitrate, together with the very low 
Fe concentrations in surface waters, iron is obviously intricately linked with the biogeochemical 
cycle. 

7.2 The Southern Ocean 

The first test of the hypothesis of iron limitation in the Southern Ocean was conducted by a 
European team during the austral spring 1988/1989 (DE BAAR, BUMA, JACQUES, NOLTING and 
TRI~GUER, 1989). In the Weddell and Scotia Seas a suite of five experiments was run from 27 
November 1988 until 4 January 1989. In every experiment the Fe enrichments of 1 nM, 10riM, 
20nM, some also with EDTA, consistently showed enhanced growth relative to the controls. 
However, the controls also consistently outgrew the typical Chl a and POC levels found in ambient 
waters. This suggested that other factors, not limiting in the control experiment, were in fact limiting 
in the field. These waters may be neritic in the sense of their containing an ample supply of 
micronutrients including iron, but are not neritic in the sense of algal growth and biomass. 
Paraphrasing GRAN (1931 ) one might say that the growth of the plankton is determined by other 
factors than the concentration of iron, phosphates and nitrates. Optimal lighting of the experiments 
and exclusion ofmesozooplankton grazers (krill, copepods) from the bottles seem to be the most 
likely explanations for the subsequent increases of the controls. Conversely, in the field suboptimal 
light and mesozooplankton grazing appear to play an important role in limiting phytoplankton from 
attaining appreciable standing stocks. This has been confirmed by several parallel studies during 
this European Polarstern Study (HEMPEL, 1993) and a model simulation validated by the overall 
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ecosystem dataset (LANCELOT, MATHOT, VETH and DE BAAR, 1993). Measurements onshore 
showed that ambient Fe concentrations in these 'neritic' waters were more than 1.5nM, i.e. -2- 
4riM in the Scotia Sea and 4-6nM in the Weddell Sea. The findings were presented at the Ocean 
Sciences conference in January 1990 (BUM& NOLTING, DE BAAR, CADI~E, JACQUES and 
TP~GUER, 1990; NOLTING and DE BAAR, 1990) and published 2 August 1990 (DE BAAR et al, 
1990), followed by publication of the suite of biological observations (BtYMA, DE B AAR, NOLTING 
and VAN BENNEKOM, 1991) and the seawater metal concentrations (NOLTING, DE BAAR, VAN 
BENNEKOM and MASSON, 1991). 

In the same austral spring and summer season, teams from Sweden and the USA independently 
collected seawater samples in the Weddell Sea and near the Antarctic Peninsula respectively. 
Dissolved iron levels in the Weddell Sea were in the 0.4-2.5nM range, with total Fe being higher 
(1-6nM) in the Weddell Sea, and on the shelves 1-25nM (WESTERLUND and OHMAN, 1991). In 
Gerlache Strait the dissolved iron concentrations of4.7-7.4nM were consistent with the viewpoint 
that the extensive shelves around the Peninsula supply iron not only to these neritic waters, but also 
downstream to the Scotia/Weddell Confluence (NOLTINO et al, 1991). On the other hand, iron in 
the upper water column of Drake Passage was as low as 0.1-0.4nM (while rejecting the data of 0.52- 
0.88nM, which were still subnanoMolar; MARTIN, GORDON and FITZWATER, 1990). The abstract 
of the latter paper (MARTIN, GORDON and FITZWATER, 1990) conveniently announced the 
preparation of another scenario which soon would create considerable turmoil: 

It is also important because oceanic iron fertilization aimed at the enhancement of  
phytoplankton production may turn out to be the most feasible method of  stimulating the 
active removal of  greenhouse gas C02 from the atmosphere, i f  the need arises. 
The next austral summer season, January-February 1990, saw another suite of iron enrichments 

experiments, now in the Ross Sea, which, judging from the nearby continent and the high 
chlorophyll a concentrations seen from satellite, is anotherneritic region. In four experimental runs, 
Fe was again seen to stimulate growth, but once again the controls outgrew the field populations. 
The results were submitted at the end of August and appeared in print at the end of the year 
(MARTIN, FITZWATER and GORDON, 1990). The data were interpreted to imply that iron deficiency 
limits phytoplankton growth in Antarctic waters; the earlier observations to the contrary, as 
described above, were ignored. On the other hand, ways towards removal of anthropogenic CO 2 
from the atmosphere were contemplated. The earlier announcement was confirmed by the 
suggestion that intentional 

... iron fertilization of  the southern ocean appears to be a feasible method at least in 
terms of  the amounts required. 
Now two studies had been carried out in different regions of the Antarctic, yielding comparable 

results, but providing different conclusions (BUMA et al, 1991). The interpretations of MARTIN, 
FITZWATER and GORDON, (1990) were reanalyzed and rejected in the same issue (DUGDALE and 
W!LKERSON, 1990). Grazing pressure, and changes therein in the incubations, appeared crucial, in 
keeping with the findings of BUMA et al (1991). At the special symposium in February 1991 
organized by the American Society for Limnology and Oceanography a comparison of daily 
division rates in the then published Fe experiments versus literature values was presented by BANSE 
(1991 c). Briefly the normal division rates in the control bottles underlined that there must be 
limitation by other processes in situ, and intense grazing was identified as a likely control. 

7.3 Science Fiction 

The intentional Fe fertilization scenario as to remove fossil fuel CO 2 from the atmosphere was 
the subject of a special workshop of the US National Research Council on 4-5 December 1989. 
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In April 1990 it was expanded upon in a Joint Global Ocean Flux Study newsletter (MARTIN, 
1990), followed by the announcement in Nature (MARTIN, GORDON and FITZWATER, 1990) on 
10th May, and an article in the Washington Post on 20 May (BOOTH, 1990). Subsequently 
calculations were published suggesting that if iron equivalent of half the capacity of a supertanker 
were to be spread over the Southern Ocean each year, it would halt the atmospheric increase of 
CO 2 (US JGOFS, 1990). The uncritical acclaim which followed in un-reviewed or fashionable 
periodicals, as well as the media, surely influenced the credulity of the oceanographic community 
(CHISHOLM and MOREL, 1991) and helped towards the realization of the special ASLO 
symposium on 22-24 February 1991. Meanwhile modellers were showing that, in the simulated 
case of'an act of god' such as iron fertilization, all surface water phosphate and nitrate would soon 
be removed, so that the eventual impact on atmospheric CO 2 would still be modest (PENG and 
BROECKER, 1991a,b; Joos, SARMIENTO and SIEGENTHALER, 1991a,b; SARMIENTO and ORR, 
1991; KURZ and MAIER-REIMER, 1993). In a formal resolution by all participants at the ASLO 
meeting all governments were urged not to consider iron fertilization as a policy option 
(CHISHOLM and MOREL, 1991, p.viii). The proposal lingered on only briefly afterwards (KtrNZIG, 
1991). In scientific articles as presented at the meeting and elsewhere the fertilization policy 
option was hardly ever mentioned, but its ethical dilemma has been the subject of a thesis (CHEN, 
1993) also providing an overview of the media-hype. Otherwise the hypothesis served another 
scientific purpose by paving the way for an in situ enrichment experiment (WATSON, LISS and 
DUCE, 1991; MARTIN and CHISHOLM, 1992), which was deemed to circumvent bottle effects 
suffered by all previous experiments. 

7.4 Consensus 

At the symposium in February 1991 it was obvious that the paradigm of the oligotrophic ocean 
being driven by the intense recycling small food web ofpico- and nanoplankton also made sense 
with respect to Fe deficiency, since small cells with high specific surface area and low Fe 
requirement for ammonia utilization are likely to be at an advantage. The occasional supply of N 
and Fe from above (aeolian iron; DUCE, 1986) or below (e.g. EPPLEY, RENGER, VENRICK and 
MULLIN, 1988, for nitrate) would then trigger blooms of larger cells such as diatoms utilizing 
nitrate. These blooms are also the main source of export production. Supply of Fe alone would 
favour increased N2-fixation, but its very low efficiency (RAVEN, 1988), also with respect to Fe 
requirement, renders N2-fixation unlikely to have a major impact on the open oceans. Otherwise 
it was recognised that bottle incubations (as pioneered by Van Leeuwenhoeck) are subject to 
implicit artefacts and need to be complemented by other approaches, e.g. in situ enrichment 
experiments and development of biochemical assays for direct assessment of Fe starvation of the 
fieldpopulation. 

The special issue arising from the 1991 symposium marked the start of the current new era in 
plankton ecology, for which the developments can only be reviewed retrospectively in the future. 
Otherwise the link between iron and the Law of the Minimum (Liebig) was briefly expanded upon 
(MARTIN, 1991; KUNZlG, 1991) but received no mention in the more recent papers (MARTIN, 1992; 
MARTIN, FITZWATER, GORDON, HUNTER and TANNER, 1993). 

7.5 Some recent developments" 

The first (DE BAAR, BUMA, JACQUES, NOLTING and TREGUER, 1989; DE BAAR et al, 1990; 
BUMA et al, 1991) and subsequent (MARTIN, FITZWATER and GORDON, 1990; HELBLING, 
VILLAFANE and HOLM-HANSEN, 1991) Fe/biota studies in the Antarctic Ocean were all in 
relatively nearshore 'neritic' waters. On one hand, these had shown (BANSE, 1991 c; DUGDALE 
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and WlLKERSON, 1990) that the vast and important ecosystems of the Weddell Sea and Ross Sea 
were not Fe-starvedper se, i.e. the distinct limitation in these HNLC regions has largely been 
ascribed (BUMA et al, 1991) to other factors. However, the even larger, distinctly offshore, 
Antarctic Circumpolar Current (ACC) region had not yet been tested with regard to the Fe 
limitation hypothesis. Recently our group investigated the geochemistry and biological role of Fe 
in the ACC and its fronts. Briefly, Fe addition always stimulated the plankton community in 
incubation experiments (VAN LEEUWE, SCHAREK, DE BAAR, DE JONG and GOEYENS, 1994; 
SCHAREK, VAN LEEUWE, DE BAAR, DE JONG and GOEYENS, 1994), but the controls again 
demonstrated that primary productivity in the ACC is definitely not Fe-limited. This is confirmed 
by the ambient concentrations of dissolved Fe in surface and deep waters of  the ACC. 
Higher ambient Fe in the Polar Frontal Zone (DE JONG, L~3SCHER and DE BAAR, 1994) is 
consistent with bloom conditions, the natural input with the Polar Frontal jet providing a 
continuous, rather than instantaneous (WELLS, 1994) impact of  in situ Fe enrichment. 
Further confirmation will be sought in the Indian and Pacific sectors of the ACC proper, 
and in other seasons. From all evidence available thus far it can be concluded that iron is 
one of a suite of  limiting factors, rather than being the sole one, controlling biological 
productivity in most, if not all, Antarctic ecosystems and seasons. 

The in situ enrichments experiment as envisaged and organised by John Martin was eventually 
performed in October 1993 near the Galapagos Islands (IRONEX GROUP, 1994). Unfortunately 
Martin did not live to see it happen. Very convincing evidence was found, but the haphazard 
nature of a field experiment was felt, leading to re-appraisal of the virtues of  bottle experiments 
(WELLS, 1994). 

8. CARBON DIOXIDE LIMITATION 

Throughout the literature it has always been assumed that the various dissolved forms of CO 2 
in seawater are so abundant that its limitation of growth rate or biomass is unlikely. Early on 
NATHANSOHN (1909, pp.62-63) thought that the end of late season blooms in the Mediterranean 
might become CO 2 limited, but this faux pas was never heard of again. Algae require the 
undissociated [CO2]aq~ous which exists in seawater at ~5-20l.tM, which can be replenished from the 
large pool of bicarbonate (Fig.6). In terms of final biomass yield, or 'carrying capacity' if you wish, 
carbon dioxide seems unlikely to be a problem. 

However, when reading von Liebig thoroughly, as well as NATHANSOHN (1908), GEBB1NG 
(1910), HECKY and KILHAM (1988), the important issue is the rate of growth. If that is true then 
CO 2 might become limiting for some species of algae (RAVEN and JOHNSTON, 1991). All reactions 
in the seawater CO 2 system (Fig.6) are very rapid, except the dissociation of riCO 3- to [CO2]aqeous 
(SKIRROW, 1975), which happens to be the one reaction the algae would have preferred to be fast. 
Also, as a bloom progresses, because of the existing equilibria at virtually constant Alkalinity, the 
steady decrease ofTCO 2 in the sea water will yield a decrease in the equilibrium concentration of 
[CO2]aq~ous as well. RIEBESELL, WOLF-GLADROW and SMETACEK (1993) recently have shown by 
model calculations that at realistic low [CO2]aq~ous the rate of CO 2 uptake may be more strongly 
limited by molecular diffusion than is the rate of nitrate and phosphate uptake. The approach 
resembles that pioneered by HARVEY (1937a) and appears consistent with observed 13C/12C 
fractionations (DEUSER, 1970; RAU, TAKAHASHI and DES MARAIS, 1989; RAVEN, JOHNSON and 
TURP1N, 1993). RIEBESELL et al (1993) also calculated the simultaneous diffusive supply of 
bicarbonate (HCO3") to the cell, this being dissociated underway at the given slow kinetic rate. As 
such this supply route would only be a few percent of the direct supply of [CO2]aq~ous to the cell. 
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(Note that the parameterization would also apply for diffusive supply of various Fe(IIl) species 
to the cell, if only their kinetics of dissociation to free Fe 3÷ ion were known.) Experimental 
evidence was provided in support of this CO 2 limitation hypothesis. The authors are at pains to 
point out that CO 2 limitation concerns the rate rather than extent, i.e. biomass yield or export 
production (RAVEN, 1993). Obviously higher growth rates may help towards higher biomass or 
export production, but not necessarily. By avoiding the trap of equating limitation of rate with 
limitation ofbiomass, which, as described above, has lured so many predecessors when working 
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on other limiting nutrient elements N, P and Fe, RIEBESELL el al (1993) nicely follow the lines 
of thought pioneered by Nathansohn, Gebbing and Harvey. 

9. DISCUSSION 

The original writings (Briefe) ofvon Liebig reflected an awareness that the rate of plant growth 
is crucial to the agriculture science of crops on farm lands. This was expanded into 50 propositions 
on agriculture, which were explicitly meant to be taken as variations on one overall theme of the 
rate of plant growth depending on nutrient availability versus the resistance against theirutilization. 
Proposition 33 was most appealing for ecologists, who applied it as the Law of the Minimum, well 
beyond its original context in agriculture. The risk associated with such extrapolation is well 
recognised nowadays (POMEROY, 1974). 

Ever since BRANDT (1899), the Law of the Minimum has been repeatedly invoked in plankton 
ecology, when studying N, P and Fe as limiting factors. Similarly NATHANSOHN (1908) was the 
first in a long series contesting its application in this context, arguing that the difference between 
rates ofphytoplankton growth and rates of loss were the proper terms in a mass balance (RILEY, 
1946; HECKY and KILHAM, 1988, P.798) of population growth rate. Fommately in the case of the 
recent revival of CO2-1imitation, the Law of the Minimum has been avoided. 

Surely, a given plankton bloom (read 'one kind ofplant ') at a given point in time and space may 
succumb for one overriding reason, e.g. shortage of one nutrient element, or light (e.g. self-shading, 
or deep mixing storm event), or grazing (e.g. krill swarm event, LANCELOT, MATHOT, VETH and 
DE BAAR, 1993). Surely such overriding factors are, more or less parallels to the Law of the 
Minimum. The well known succession of algal species which occurs during the North Atlantic 
spring bloom is a classical example of  limitation of a single plant taxon (actually group of 
species, i.e. diatoms) by one element (Si), and this is then followed by N, P depletion limiting other 
plants. However, for the various pelagic ecosystems of the complete Antarctic Ocean, and other 
world oceans, when integrated over time and space, limitation of  growth by a single factor 
appears unlikely. 

With discussing the growth rate or standing stock of phytoplankton in the world ocean it is 
irrelevant to discuss whether one or the other of nutrient elements N, P, Fe and C, is the ultimate 
limiting element. Surely in the central gyres of the temperate zones both N and P appear to be 
severely limiting, but the loss terms (grazing, sedimentation) are also severe and the roles of Fe and 
C are poorly understood. In the so-called High Nutrient Low Chlorophyll regions (HNLC, e.g. 
~40% of Pacific, REID, 1962) grazing most likely is to be important at all latitudes (FROST, 1991; 
BANSE, 1992; FROST and FRANZEN, 1992), and light limitation at high latitudes (TRANTER, 1982), 
while deficiency of Fe and C may also have an effect (RIEBESELL etal, 1993; DE BAAR et al, 1990). 
With respect to export production, or new production as its equivalent under steady state, it might 
be more sensible to contemplate whether it is P, or N or Fe as the ultimate global limitation (BRAND, 
1991), or is this another irrelevant question triggered by the general application of the Law of the 
Minimum in ecology? 

Another consequence of the extrapolation of the Law of the Minimum to ecology has been the 
debate on the ultimate limiting nutrient in freshwater versus marine environments (e.g. SMITH, 
1984; HECKY and KILHAM, 1988). Here there appears to be a tendency to suggest that freshwater 
systems often are P-limited, whereas marine systems would bemore prone to N-limitation, the latter 
in concordance with the original hypothesis o fBRANDT (1899), albeit fortuitously. Whether or not 
freshwater systems generally are P-limited is beyond the scope of this study. For marine N- 
limitation, HOWARTH and COALE (1985) have sought to provide a mechanism by suggesting that 
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marine algae have difficulty taking up Mo (molybdenum). Both Mo and Fe are essential for nitrate 
reduction, and even more for N2-fixation (RAVEN, 1988). The anion molybdate occurs in high 
concentration in sea water. Yet at even higher concentrations o f  major  anion sulphate in sea water, 
the marine algae were assumed to have problems in distinguishing between the similar anions, 
i.e. the required preferential uptake o f  molybdate would be impaired. However  elegant, the 
experimental evidence failed to provide firm validation o f  this marine Mo deficiency hypothesis. 
Nowadays it is clear that the concentration o f  Fe in freshwater systems is much higher than in the 
central ocean basins. Hence the Fe required for nitrate reduction or N2-fixation is in short supply 
in the oceans, i.e. one argument in favour o f  N-limitation o f  marine algae, albeit indirectly as the 
underlying mechanism is actually Fe limitation. However  here it has been argued that no one 
single limiting factor exists in nature, i.e. the past debate on P- versus N-limitation o f  freshwater 
versus marine ecosystems is deemed a non-issue. 

The various concepts o f  control of  plankton growth, or iron supply to the cell, have existed for 
many decades. The distinction between opposing concepts (hypotheses) can only be made by 
observational evidence. Some major breakthroughs in marine plankton ecology can be ascribed to 
the development and application o f  novel chemical techniques and analyses, thus allowing the 
observations to be made with the precision necessary. Atkins, Harvey, Cooper, Wattenberg, and 
Martin were all chemists, each one seeking to develop advanced techniques to solve the problems 
they considered to be important. Further study of  the limiting role o f  CO 2 will also require 
sophisticated, accuratemeasurements o f  the CO 2 systemboth in seawater and within the cell. These 
developments are in keeping with the findings o f  KUHN (1962) in other sciences, who concluded 
that competing concepts persist for long periods, until new technology opens the way for their 
resolution, i.e. enabling the major breakthroughs in understanding to occur. 
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