Macro/micro nutrients in seawater

Discussion in 'Water Chemistry' started by Fred Dulley, 2 Nov 2010.

  1. Fred Dulley

    Fred Dulley Member

    Joined:
    8 Jul 2007
    Messages:
    512
    Location:
    Cardiff, Wales
    Hi gang at UKAPS.
    Nothing to do with the aquaria and a little bit off-topic I know but I wanted to pick your brains with regards to this termonology.
    I'm currently undertaking my 2nd year of Ocean Science at Plymouth Uni.
    During our Chemical and Biological Oceanography lectures, the lecturer (who loves to work in mols per litre) insists on classing N+P+Si as micronutrients. I've always understood them to be macro nutrients (most certainly N+P). I've been reading a few sources online that say they are macro nutrients (corroborates with my opinion).
    Surely even though it's seawater, N+P are still macro nutrients and not micro nutrients?

    We've also come across Redfield Ratio...

    Taken from one of Tom Barr's posts

    From what I can see...it's OK if you're talking purely about number of atoms. But if you want to apply it via a concentration based on mass (ppm for example), then necessary calculations must be carried out. Is that right?

    Is the Redfield Ratio right if you're talking about no. of atoms. Or is it completely wrong?

    All your inputs are appreciated (especially Tom and Clive :D )
     
  2. ceg4048

    ceg4048 Expert/Global Moderator Staff Member

    Joined:
    11 Jul 2007
    Messages:
    8,953
    Location:
    Chicago, USA
    Hi Fred,
    When talking about Marine ecosystems, it's important to understand the differences with regard to freshwater systems. In the oceans, by an astronomical margin, the dominant forms of life, by mass and population, are the autotrophic community composed of phytoplankton and zooplankton. So their composition and mode of existence will differ from freshwater macrophytes. As you mentioned, it's also important to be clear regarding atomic ratios in terms not only of composition of the organism but also in terms of what the organism consumes. Composition and consumption will also be a function of the species being studied. So for example if you're focused more on the 10,000 or so species of Diatomic algae then Silicon will be an important element but perhaps not so important if Cyanobacteria is a major focus of the study.

    Redfield's 1963 equation for planktonic respiration looks like this:
    106 CO2 + 16 HNO3 + H3PO4 + 122 H2O = (CH2O)106 (NH3)16 (H3PO4) + 138 O2

    So you can see that in this equation the N and P values are relatively low relative to Carbon, Hydrogen and Oxygen, but this is a reaction equation, not a compositional one. If you're studying Oceanography then you have to consider that the material is within the context of reactions and this may be the reason the lecturer has classed those elements in the micronutrient category. These reactions also have best relevance in terms of molar expression. Mass concentration would have less relevance in this context.

    In our expression of tank horticulture, we are much more tunnel vision. We are much less interested in the web of ocean reactions and we concentrate more on the narrow band of reactions that maximizes the success of a very small percentage
    of reactions. Our applied technology is based on the application of mass quantities of nutrients under very special and isolated conditions, so it's really not comparable. Redfield's ratios and studies do not apply to farmers for these reasons.

    However, Redfield's studies are fundamental to any basic Oceanography course because he made some of the first observations of marine biochemistry. The basis of his research had a lot to do with the stoichiometric analysis of the biochemical functions of these autotrophs that were collected. He didn't have the tools that are available now and so he was not able to completely separate the quantities of elements that the organisms are made of from their metabolic products. So for example suppose I were studying how much carbon and oxygen you were made of but didn't take into account the CO2 in the gas spaces of your lungs or in you bloodstream or in your kidneys and intestines. These would all count as metabolic products, not compositional products.

    Here's an extract from a ScienceWeek article which may shed some light:
    Hope this helps!

    Cheers,
     
  3. Fred Dulley

    Fred Dulley Member

    Joined:
    8 Jul 2007
    Messages:
    512
    Location:
    Cardiff, Wales
    Thanks ever so much, Clive.
    You are a wealth of knowledge.
     

Share This Page

Facebook Page
Twitter Page
  1. This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
    By continuing to use this site, you are consenting to our use of cookies.
    Dismiss Notice